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Accurate Prediction of Speech Intelligibility
without the use of In-Room Measurements

KENNETH D. JACOB, THOMAS K. BIRKLE, AND CHRISTOPHER B. ICKLER

Bose Corporation,Framingham,MA O1701

The Speech Transmission Index (STI) has been shown to be an accurate predictor of speech
intelligibility in auditoria, and the computationally more efficient RASTI method has recently
become an official International Electrotechnical Commission (IEC) standard. While instru-
ments have been developed by others to measure the STI after room construction is complete and
the sound system is operating, until now the STI method has not been implemented and tested
in a sound system modeling program. Such an implementation has a fundamental advantage in
that it does not require acoustic measurements from the room as input; this means that
intelligibility can be predicted in unbuilt or inaccessible rooms solely on the basis of modeled
rather than actual behavior. In this study, a new microcomputer-based implementation of the STI
method is described along with the results of an experiment designed to test its accuracy. The
accuracy of the new method is shown to be essentially the same as the accuracy of predictions
based on in-room measurements. These results show that speech intelligibility can be accurately
predicted without using acoustic measurements.

0. INTRODUCTION

One of the challenges in designing high quality sound systems for large There are three kinds of intelligibility prediction methods. The most
spaces is to deliver intelligible speech reinforcement to every listener, direct require the use of screened and lxainedlisteners, and one of a number
Listeners may tolerate problems associated with frequency response, of different standardized word lists reproduced through the sound system
ambient noise, and localization, but if the speech is difficult to understand, under consideration [5]. Another, less direct set of methods requires that in-
complaints are certain to result. For this reason, sound system designers room measurements be made and used as input to one of several formulas
need to be confident that a design will be intelligible when installed. While for predicting intelligibility [6]. These methods are attractive because they
instruments are available which estimate the intelligibility of installed sound
systems [1, 2, 3], no comprehensive and accurate system has been devel-
oped for predicting intelligibility in cases where acoustic measurements are _ Rietschote, Houtgast, and Steaneken [4] developed a computer program for generating the

impossible or impracticalL STI using a ray-tracing and statistical acoustics approach. The program, while shown to beaccurate for the special case of an omnidirectional source in a rectangular room, has not been
developed for general purpose use in sound system design.
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do not require the time, money, and expertise needed to conduct subject-
based tests, but are by definition not applicable to cases where acoustic
measurements are not possible. Least direct are methods which use only a
model to generate the input needed to use one of the intelligibility formulas.
The three kinds of intelligibility prediction methods are illustrated below:

Predictions based on modeled behavior

Predictions of subject-based test scores
from in-room measurements

Predictions of true system intelligibility
from subject-based test scores

True intelligibility of system in actual use

One algorithm for predicting subject-based test scores from in-room
measurements has been accepted as an official standard by the International
Electrotechnical Commission (IEC//268-16). The Speech Transmission
Index method has been found to be accurate in numerous independent
studies [including 7, 8, 9,10]. For these reasons, the STI method was
chosen for implementation in an existing computer program for designing
sound systems [11].

The STI method requires the squared impulse response, or sound energy
vs. time response at a given listener location as input. A computer-based
implementation of the method must therefore be capable of generating this
function. In the implementation described in this study, the energy vs. time
response is divided into three parts: direct arrivals, discrete early arrivals
reflected from room boundaries, and late diffuse reverberation. A computa-
tionally efficient representation of this response, called the Hybrid Energy
Decay Curve (HEDC), is used. The HEDC [12] is composed of an early
part, consisting of direct arrivals and reflected arrivals predicted using an
image source method [13], and a later part consisting of late reverberation
predicted using statistical reverberation theory [14]. The result is an
accurate representation of the essential information needed as input to the
STI algorithm.

The new STI implementation has been tested for accuracy by comparing
its speech intelligibility predictions with subject-based intelligibility test
scores obtained in fifty different conditions from ten auditofia; At the same
time, in-room measurements were made to obtain measured STI values.
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Predictions of speech intelligibility made by the new computer-based STI
method as well as by measured STI values were compared to the subject-
based scores. In addition, predicted and measured STI values were com-
pared to test the suitability of the HEDC as a substitute for the actual
source-to-receiver energy vs. time response.

1. STI METHOD OF PREDICTING INTELLIGIBILITY

1.1 Rationale

The STI method developed by Houtgast and Steeneken [15] models the
behavior of actual speech. In this model, continuous speech is reduced to
an amplitude-modulated speech spectrum. The modulation occurs when the
broadband spectrum created by the vocal cords is transformed into discrete
speech sounds by the mouth. Houtgast and Steeneken measured the
modulation spectrum of continuous speech and found that it ranged from
about 0 to 12.5 Hz.

The general requirement for preservation of intelligibility from talker to
listener is for the speech signal topass through the acoustic environment
with the original modulation characteristics unchanged. Late-arriving
reflections and background noise both have the effect of reducing the
amount of modulation present in the original speech signal. Thus the
degree to which the sound system and room combination preserves the
original modulation is a good indication of its suitability for speech trans-
mission.

The Modulation Transfer Function (MTF) quantifies the modulation
reduction of a speech transmission system. As an example, Fig. 1 shows the
effects late reverberation and background noise have on one modulation
frequency; as they increase, the modulation, as measured by the modulation
index, is reduced. Perfect transmission results in a modulation index of 1.0.
Complete loss of the original modulation results in a modulation index of 0.

Because the Speech Transmission Index is calculated using modulation
frequencies less than 12.5 Hz, it can be shown that early reflections arriving
within a certain time do not lower the STI. In fact, in the presence of late-
arriving reflections, an increase in early reflection level increases the STI
and the subject-based intelligibility scores [16]. It is central to the STI
method that early reflections have a beneficial effect on intelligibility.

In addition to providing the information necessary to compute the
Speech Transmission Index, the modulation transfer function contains
useful diagnostic information. The acoustic conditions responsible for



reducing the modulation indices can often be determined by simple inspec-
tion of a speech system's modulation transfer function. Examples illustrat-
ing these diagnostic functions are shown in Fig. 2.

1.2 Computing the Speech Transmission Index
In applying the modulation transfer function to the problem of predict-

ing speech intelligibility, modulation frequencies at one-third octave
intervals from 0.63 to 12.5 Hz are used. These fourteen discrete modulation

frequencies are used to modulate seven octave bands centered from 125 Hz
to 8 kHz. The STI method requires the calculation of the modulation
indices for the entire matrix of fourteen modulation frequencies in seven
octave bands. A simpler method called RASTI (RApid STI) uses only nine
modulation frequencies in two octave bands [2].

Once the modulation transfer functions have been computed for each of
the seven octave bands, they are reduced to the single number Speech
Transmission Index. This reduction is detailed elsewhere [15] but essen-

tially requires converting the modulation indices to equivalent signal-to-
noise ratios, which are then summed by octave band, and the resulting sums
weighted and averaged.

1.3 Schroeder Method of Computing the MTF
Although the modulation indices may be measured directly by compar-

ing system input to output modulation, Schroeder [17] derived the relation-
ship between the source-to-receiver squared impulse response and the MTF.
This relationship makes it possible to compute the MTF once having
measured or predicted the squared impulse response. The Schroeder
formula is:

Mre(F)=IJo
h 2(t)e-i2_Ft dt

I h2(t)d t (1)

where,
MTF is the modulation transfer function.
h(O is the system impulse response.
F is the modulation frequency (Hz).



The modulation transfer function is therefore proportional to the
magnitude of the Fourier transform of the squared impulse response. More
simply, the modulation transfer function is the very-low frequency response
of the squared impulse response. Direct implementation of this equation,
however, does not properly account for the effect of backgroundnoise on
the STI. The STI algorithm specifies an input spectrum which is not flat,
but rather approximates the average power spectrum of the human voice;
thus the signal-to-background noise ratio (a factor directly affecting the
STI) would be different than the ratio found by simply measuring the
system's impulse response. However, if the speech signal to background
noise ratio is known, its effect can be added after the MTF has been
computed using a squared impulse response uncorrupted by noise [15].

1.4 Reported Accuracy of the STI Method
$teeneken and Houtgast [18] tested the accuracy of their method by

measuring the $TI in a large number of different conditions. These in-
eluded conditions where bandpass limiting, background noise, peak
clipping, automatic gain control and reverberation were responsible for
degrading speech intelligibility. They scored speech intelligibility using
trained listeners and Dutch monosyllabic nonsense words. A third-order
regression curve was fit to the $TI versus speech intelligibility data, and a
standard deviation around this curve of o = 5.6% was found. In practical
terms this means that measurement of the STI results in a prediction of
speech intelligibility which is within _+5.6% of the actual speech intelligi-
bility most of the time. When their analysis was confined to only those
conditions where modulation reduction was due to distortions in the time

domain, including background noise, reverberation, and automatic gain
control, the standard deviation of the data about the regression curve was
slightly higher at o = 5.8%.

2. COMPUTER IMPLEMENTATION OF THE STI METHOD

2.1 Room and Sound System Modeling
The STI method has been integrated into a computer program for

predicting the performance of sound systems named "Modeler Design
Program" [11]. Modeler uses a graphic user interface to facilitate rapid
entry of room models and selection and placement of loudspeakers [20].



Rooms are modeled in the program by drawing a series of N-sided
planes (where N < 10) each of which is assigned a surface material defined
by its octave-band Sabine absorption coefficients. Sound sources are
represented by their full-space octave-band polar responses from 125 Hz to
4 kHz, and by their sensitivity and maximum power handling capability.
Sound systems are modeled by specifying cluster locations, source aiming
angles, electrical power requirements, and electronic time delays. An
example of one of the rooms modeled in this study is shown in Fig. 3.

The program uses three algorithms to produce output relevant to the
sound system designer. Direct field contributions at a point in the room are
predicted by computing the inverse square loss from the source to the
listener. Discrete early reflections are predicted using an image source
method [13]. Late diffuse reverberation is predicted using the assumptions
of statistical acoustics [14].

2.2 Hybrid Energy Decay Curve (HEDC): Rationale
As discussed in Section-1.3, the modulation transfer function and thus

the STI can be computed using Eq. 1, which requires the squared impulse
response as input. Prediction of the squared impulse response in a modeled
room requires the prediction of an enormous number of reflections. On
average, it can be shown [21] that the number of reflections arriving within
a certain time is:

47CC3t3
N = (2)3V

where,
N is the number of reflections arriving within t seconds.
c is the speed of sound in meters per second.
t is the time in seconds.
V is the volume of the room in cubic meters.

In a typical auditorium (V = 6,000 m3)28 reflections arrive in the first
one-tenth of a second, 3,522 arrive in the first one-half second, and 28,172
arrive in the first second. Therefore most of the calculations required to
predict the source-to-receiver squared impulse response are associated with
the enormous number of reflections which occur in typical rooms.



If Eq. 2 is differentiated with respect to time, the average number of
reflections per unit time, or the reflection density, can be found:

dN 4 Irc3t2
=p(t)- -- (3)

dt V

where,
p(t) is the number of reflections per unit time.

This equation shows that the reflection density increases with time
squared. As the reflection density increases, however, so does the diffuse-
ness of the reverberant field. The room rapidly becomes filled with a great
number of wavefronts whose behavior becomes more and more random.

Under these conditions, it is possible to describe the acoustic behavior using
statistical assumptions - toaverage the wavefronts instead of attempting to
follow them independently. Accounting for the average behavior of diffuse
reverberation is computationally much simpler than accounting for each
individual reflection.

In generating the Hybrid Energy Decay Curve, an image source method
is used to predict the discrete early reflections; these are the arrivals which
are uniquely characteristic of the sound system design (speaker types,
speaker aiming angles, power levels, and delay) and the room (geometry
and specific distribution of absorption). A statistical model of reverberation
is then used to account for the late diffuse reverberation. The result is a

representation of energy transmission which exploits the sophistication of
the computer room model when it is still computationally efficient to do so,
and then switches to a much simpler model to account for the remaining late
statistical reverberation. The choice of when to switch from one model to

the other depends on the specifics of the sound system design and room
model. A graphical representation of the HEDC, consisting of discrete
early arrivals and late diffuse reverberation is shown in Fig. 4.



3. EXPERIMENT TO TEST THE ACCURACY OF NEW
STI METHOD

3.1 Test Rooms, Sound Sources, and Listener Positions
Ten rooms, three sound sources, and two listener positions per room

comprised a data base of fifty different conditions for speech intelligibility.
The details of these conditions are extensively described elsewhere [10].
The rooms ranged in size, architectural complexity and reverberation
characteristics. The sources were chosen for their wide range of polar
responses, and listener positions were chosen to represent positions both
near and far from the sources. These conditions are summarized in the
tables below.

Table-1. Room Parameters

Name T60 Function
BerkleePerformanceCenter 0.92 Music

CoolidgeComer Movie House 1.0 Cinema
HuntingtonTheater 1.1 Drama
SaintBridgetChurch 2.0 Religious
NevinsHall 3.5 Multi-function
JordanHall 2.2 Music
MechanicsHall 2.2 Music
SouthEndCathedral 3.3 Religious
Cyclorama 3.5 Multi-function
MIT Indoor Track 4.6 Athletics / P.A.

Table-2. Loudspeakers

Name Type Directivity 3
Soundsphere 2212-1 Omni-radiator 1.1
Bose 802-I1 Eight driver array 7.3
Electro Voice HR6040A Constant directivity horn 17.7

(with TL806AX)

a Reverberation times are averages of the measured times in the 1, 2 and 4 kHz octave bands.

a Loudspeaker directivities are averages of the measured on-axis directivities in the 1, 2, and
4 kHz octave bands.



Table-3. Listener Positions

Name Relationship to Source Position in Room
Near position On axis _+7.5° 1/3 of room length
Farposition Onaxis+7.5° Rearofroom

3.2 Subject-Based Testing
Subject-based intelligibility tests were conducted for every combination

of room, sound source, and listener location, the exact details of which are
described elsewhere [10]. The tests were administered according to the
American National Standards Institute "Standard for Measuring Monosyl-
labic Speech Intelligibility" (ANSI S3.2-1971). Subject-based intelligibility
scores are denoted %PB-ansi in this study. The total number of words
presented for each room, source, and listener position combination ranged
from 2,000 to 2,800 words. Mean scores for the fifty conditions are shown
in the Appendix.

3.3 In-Room Measurements

For each room, source, and listener position combination, system
impulse responses were measured and recorded. The STI for each of these
measured impulses was computed by applying Eq. 1and the MTF-to-STI
conversion mathematics specified by Houtgast and Steeneken [15]. These
values are denoted STl-measured,and are tabulated in the Appendix.

3.4 Room Modeling and STI Prediction
Room models were created in the computer program for each of the ten

rooms. Materials were chosen from a standard list of materials [14], and
source and receiver locations were entered into the computer to match their
actual locations. For each room, source, and listener position combination,
an HEDC was calculated in each octave band from 125Hz to4 kHz. Each

HEDC was then used to compute an octave-band modulation transfer
function. (The 8 kHz octave band was simply a copy of the 4 kHz band, but
was s/absequentlyweighted according to the algorithm specified by
Steeneken and Houtgast.) Finally, the modulation transfer functions were
condensed to the Speech Transmission Index; these values are denoted STI-
predicted,and are tabulated the Appendix.



4. RESULTS

4.1 Relationship Between STI-measured and %PB-ansi
A third order polynomial regression curve was computed for the STI-

measured versus %PB-ansi data. The regression curve and data are shown
in Fig. 5. The standard deviation of the data about the regression curve is
5.2%, which is similar to the 5.8% value reported by Steeneken and
Houtgast. The regression curve equation is:

%PB - ansi = 788.26STI 3 - 1643.9STI 2+ 1179.3STI - 196.3 (4)

4.2 Relationship Between STI-predicted and %PB-ansl
The STI-predicted values were converted to %PB-ansi scores using Eq.

4; the data are shown in Fig. 6. The standard deviation of this data about
the regression curve is 5.4%. Thus the overall error in predicting speech
intelligibility using STI-predicted values is essentially equivalent to the
error using STI-measured values. This means that there is no significant
penalty for moving from the domain of in-room acoustic measurements to
that of a pure computer model in terms of predicting speech intelligibility.

4.3 Relationship Between STI-predicted and STI-measured
While the preceding result shows that speech intelligibility can be

predicted with essentially the same accuracy using STI-predicted values as
with STI-measured, it is als0 of interest to study the direct relationship
between the STI-predicted and STI-measured values. A scatter plot
showing this relationship is shown in Fig. 7. The correlation coefficient for
the data is r = 0.81, which is considered good to very good. Thus the
HEDC can be considered as a reasonable substitute for the actual squared
impulse response in this application.

5. DISCUSSION

5.1 Overall Accuracy of the STI Method
Results show that predictions of speech intelligibility using the new

computer-based implementation of the STI method are essentially as good
as those based on measured STI values. This is an important step in
providing the sound system designer with a tool for predicting speech
intelligibility in unbuilt or inaccessible rooms. However, it is important to
note the significance of a standard error of estimation of 5 to 6%. The



Houtgast and Steeneken data [18], and the measured and predicted STI data
from this study each show standard deviations in this range. A standard
deviation of 5 to 6% means that the subject-based intelligibility scores will
be within one standard deviation of the predicted intelligibility most of the
time. Therefore an error of + 5 to 6% intelligibility must be included in
interpreting predictions based on the Speech Transmission Index.

The 5 to 6% error inherent in the STI method, while no greater than
some other published methods and much less than others [10], may be
reduced in future studies through refinement. For example, the STI method

· currently does not weight modulation frequencies. It may be that some
modulation frequencies are more important than others, such as those
primarily responsible for producing the consonant sounds.

5.2 Limitations of the Computer-Based STI Method
The microcomputer-based implementation of the STI method described

in this study is based on an image source method of predicting early
reflections and statistical acoustics theory to predict late diffuse reverbera-
tion. Both of these models have known limitations. One is the assumption
that a room boundary can be approximated by a flat plane with a single
octave-band absorption coefficient. Real surfaces can both reflect and
scatter sound waves, and have absorption properties which are a function of
incident wave angle. In addition, the prediction of reverberant decay rates
using statistical assumptions is, by the nature of statistics, only an estimate.
Therefore rooms with large complicated scattering surfaces or unusual
reverberation characteristics are likely to result in higher errors.

The fifty conditions used in this study each represent conditions where
reverberation is responsible for degrading speech intelligibility. Back-
ground noise was minimized as a factor by guaranteeing in each case that
the speech signal-to-background noise ratio exceeded 15 dB. (The empha-
sis on the effect of reverberation was intentional in order to test the suitabil-

ity of the Hybrid Energy Decay Curve.) Thus the effect of background _
noise was not explicitly tested. However, this effect has been extensively !
studied by Houtgast and Steeneken [15, 18, 19] and others [8, 9, 22].

Last, the database in this study, while large, does not include examples
of some typical sound system types. Purely distributed systems and
systems employing speakers with electronic delay were not tested. How-
ever, no additional limitations should exist in generating the HEDC for
these system types than already exist for those systems included in this
study.



5.3 Relationship Between STI and Subject-Based Tests
The relationship established in this study between the STI and %PB-ansi

(Eq. 4) is unique. Other studies have used different subject-based tests,
methods of training subjects, or test conditions, and have therefore arrived
at different regression curves relating STI to speech intelligibility. The
details of these relationships including the regression curves, are given in
the Appendix.

6. CONCLUSION

The Speech Transmission Index method of estimating speech intelligi-
bility has been implemented in a microcomputer-based program for
predicting sound system performance. The STI implementation requires no
in-room measurements and is thus suitable for unbuilt or inaccessible sound

systems and rooms. The new technique relies on a computationaily
efficient method of representing the transmission of energy from a sound
source to a listener called the Hybrid Energy Decay Curve (HEDC). This
hybrid curve is generated using an image source method to predict discrete
early arrivals and statistical acoustics theory to predict late arriving diffuse
reverberation.

Results of an experiment designed to test the accuracy of this new
implementation show that essentially no loss of accuracy occurs in predict-
ing speech intelligibility when compared to predictions based on in-room
measurements of the STI. The accuracy of speech intelligibility predictions
was shown to be + 5.4%. These results mean that sound system designers
can predict with known accuracy the speech intelligibility of unbuilt or in
process designs. The results also show that the correlation between
predicted STI values and measured STI values is good to very good (r =
0.81). This shows that the HEDC is a good substitute both for the actual
source-to-receiver energy vs. time response and other computationally more
intensive representations of this response.

The overall accuracy of the STI method was shown to be important in
terms of interpreting predictions of speech intelligibility. While predictions
based on these STI values are as good, and is some cases much better than
other methods, sound system designers should be mindful that the intelligi-
bility estimates can only be described as good, not excellent.

Last, it was the intent of the authors to describe this study in sufficient
detail for it to be reproduced by others. However, repetition requires the
use of the computer program in which the new STI method is implemented
since all of the details necessary to generate the HEDC have not been



presented. Investigators wishing to reproduce this experiment or some
variant of it should contact the authors in order to receive permission to use
the computer program.
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8. APPENDIX

8.1 Relationship Between STI, %PB-ansl and other
Subject-Based Tests '

In this study, phonetically balanced (PB) monosyllabic English words
were used as specified by an ANSI standard (S3.2-1971). The relationship
between the STI and %PB-ansi, shown as the regression curve of Figs. 5
and 6, is applicable to the ANSI test only. Other studieshave used other
subject-based tests, and the relationships established between the STI and
these tests are different. Because of these differences, the subject-based test
must be specified in converting the STI to subject-based speech intelligibil-
ity scores; the method of testing, the type of words, and the language all
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must be included since each will affect the relationship to the STI. The
relationship between the STI and various subject-based tests determined by
other studies are discussed here.

Houtgast and Steeneken used phonetically balanced Dutch consonant-
vowel-consonant (CVC) nonsense words [19]. Bradley [9] measured
intelligibility using the Fairbanks Rhyme Test, which is a multiple choice
test where the words in each set rhyme. Anderson and Kalb [8] related the
STI to two types of speech intelligibility tests. For one, they used the same
words as this study but "thoroughly familiarized" their listeners with them.
In the second they estimated the relationship of the STI to the Modified
Rhyme Test (a variant of the Fairbanks Rhyme Tes0 by using data from
another study [22]. The relationship between the STI and the various
methods of measuring speech intelligibility established by these studies is
shown in Fig. 8.

Inspection of these regression curves shows that the relationship
between the STI and speech intelligibility established in this study is similar
to that established by Houtgast and Steeneken for Dutch CVC nonsense
words. Scores from this study are slightly lower than those obtained by
Houtgast and Steeneken. The similarity may be interpreted as saying that
using English words and less subject training is approximately the same as
using nonsense words and more training. However, there appears to be a
penalty in using less training - the need to use a much larger number of
words to achieve similar accuracy. In this study, each data point represents
the transmission of between 2000 and 2800 words, whereas Houtgast and
Steeneken used only 400 [23] for each of their conditions. This represents a
factor of four difference in testing time.

Fig. 8 also shows that subjects score much higher on the two rhyme tests
than the other measures of speech intelligibility. This is expected based
simply on the fact that the rhyme tests are multiple choice (closed se0 tests
and choices differed only in one consonant. CVC words contain by
definition two consonants, and PB words average almost two per word.

The Anderson and Kalb curve shows that their subjects scored signifi-
cantly higher in intelligibility tests than those in this study or those of the
Houtgast and Steeneken study. The most obvious explanation is the fact
that Anderson and Kalb "thoroughly familiarized" their subjects with the
words before beginning testing. Thus, in a sense, their subjects were
choosing from a closed set, and may have memorized the words. Under
these conditions, an increase in the intelligibility scores would be expected.
Anotherpossible explanation is based on the fact that Anderson and Kalb
used single-channel artificial reverberation whereas Houtgast and Steeneken



and this study used reverberation from real moms. In addition Anderson
and Kalb only used one reverberant decay rate and used (without explana-
tion) an initial delay in its onset of 95 ms. It is possible therefore, that they
inadvertently created artificial conditions for which the STI measure was
not developed.

These results show that the relationship between the STI and speech
intelligibility is strongly dependent on the type of subject-based speech test
used. The test used by the inventors of the STI method was shown to be
similar to the American Standards method used in this study. Closed-set
rhyme tests or special training of subjects leads to significantly different
relationships to the STI measure. These results also point out the need to
establish the relationship between the STI and other languages, although
some work has been conducted in this area [24].

8.2 STI-measured, STI-predicted, and Subjective Data
Exact experimental details of subject-based testing can be found in [10].

In the table below: STI-meas.refers to in-room measurements of the

SpeechTransmission Index, STl-pred.refers to the predicted STI (based on
the Hybrid Energy Decay Curve) from the computer program, and
%PB-ansirefers to the mean score on intelligibility word lists.

Condition STI-meas. STI-pred. %PB-ansi

Berklee Sphere Near 0.65 0.67 96
Far 0.71 0.64 93

Array Near 0.72 0.72 96
Far 0.72 0.71 96

Horn Near 0.73 0.74 98
Far 0.78 0.73 96

Coolidge Sphere Near 0.60 0.58 97
Far 0.56 0.51 90

Array Near 0.71 0.62 97
Far 0.64 0.56 94

Horn Near 0.71 0.67 97
Far 0.61 0.60 91



Huntington Sphere Near 0.61 0.55 94
Far 0.57 0.54 86

Array Near 0.70 0.61 95
Far 0.64 0.63 89

Horn Near 0.74 0.69 94
Far 0.67 0.69 92

Bridget's Sphere Near 0.56 0.58 92
Far 0.48 0.54 82

Array Near 0.70 0.58 92
Far 0.54 0.60 88

Horn Near 0.65 0.57 93
Far 0.54 0.64 86

Nevins Sphere Near 0A 1 0.47 78
Far 0.48 0.51 89

Array Near 0.48 0.50 87
Far 0.51 0.56 89

Horn Near 0.50 0.57 89
Far 0.60 0.59 90

Jordan Array Near 0.60 0.54 89
Far 0.52 0.54 78

Horn Nea{ 0.64 0.60 90
Far 0.56 0.59 87

Mechanic's Array Near 0.58 0.54 86
Far 0.54 0.59 83

Horn Near 0,60 0.58 87
Far 0.65 0.63 91

Cathedral Array Near 0.58 0.49 90
Far 0A7 0.48 76

Horn Near 0.58 0.57 91
Far 0A4 0.54 66

Cyclorama Array Near 0.61 0.50 86
Far 0.48 0.47 73

Horn Near 0.68 0.58 87

Far 0.52 0.50 72

MITTrack Array Near 0.55 0.48 75
Far 0.44 0.37 60

Horn Near 0.58 0.57 84

ll
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Fig. 1. The STI method uses an artificial speech signal modeled after the behavior of
actual speech. This signal is an amplitude-modulated speech spectrum. In this figure,
the blurring effect background noise and reverberation have on the input waveform is
shown. The modulation index (m) is a measure of the preservation of the original
modulation at the input of the system, and the Modulation Transfer Function (MTF) is
the modulation index as a function of modulation frequency (F). (Figure attributable to
Houtgast and Steeneken [15].)
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Fig. 2. The Modulation Transfer Function (MTF) is a good diagnostic tool since its
shape reflects the acoustic conditions responsible for reducing speech intelligibility.
Several examples are shown in this figure. Perfect preservation of the original
modulation results in no reduction of the modulation index. Reduction due to
background noise alone results in an overall reduction of the modulation index.
Reductiondue to pure exponential reverberation results in a monotonically decreasing
modulation index with modulation frequency. Reduction due to a single reflection
causes a deep notch in the MTF.
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Fig. 3. A medium-sized church as modeled in the computer program is shown.
Rooms are constructed as a series of adjacent planes, each of which is assigned a
surface material. Sound sources are represented by their full-space polar responses
from 125 Hz to 4 kHz. The early-energy vs, time response (consisting of direct field
and early reflections) is shown for the position at the rear of the room.
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Fig. 4. A graphical representation of the Hybrid Energy Decay Curve (HEDC) is
shown. The HEDC consists of an early part- composed of direct field and early
reflections predicted using an image source method - and a late part representing
diffuse reverberation and predicted using classical reverberationtheory.
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Fig. 5. A scatter plot of STI-measured (from the ten-room data base) versus speech
intelligibility from the ANSI subject-based test is shown, along with the third-order
regression curve. The average distance of the points from the regression curve, or
the error in predicting intelligibility from the measured STI, is 5.2%.
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Fig. 6. STI-predicted (from the computer-generated HEDC) versus speech
intelligibility from the ANSI test is shown, along with the third-order regression curve
of Fig. 5. Notice that the closeness of data to the regression curve is essentially the
same as the data of Fig.-5.
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Fig. 7, A scatter plot of STI-predicted (from the computer-generated HEDC) versus
STI-measured is shown. The straight line represents perfect correlation. The
correlation coefficient of r = 0.81 is good to very good,
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Fig. 8. The relationships between the Speech Transmission Index (STI) and various
subject-based intelligibility tests used in this and other studies are shown. The
differences are primarily the result of different test types. The top two curves are from
rhyme tests, The two middle curves are from tests using monsyllabic English words.
The lowest curve (from Houtgast and Steeneken) is from a test using monosyllabic
nonsense words.


